
FQA 6 − Networking

6.1 − Before we go any further

Plan 9�s approach to networking is unusual: most operations comprise reading and writ
ing ("composing") byte streams ("files"). For the bulk of this document, it helps if you
have read and at least partially understood FQA 0.1 − What is Plan 9?

Next, read: The Organization of Networks in Plan 9

If you are working with applications such as web servers, FTP servers, and mail servers,
you may benefit greatly by reading the RFCs.

Note: A script for downloading all the RFCs is located in /lib/rfc/grabrfc. It
copies the files into /lib/rfc/, and it may take hours for the script to run to comple
tion.

6.2 − Network configuration

Basic networking is initially configured by the installation process. However, more com
plex settings or services may be desired. In Plan 9, network configuration is organized
in ndb, the network database.

From ndb(6):

The network database consists of files describing machines known to the local
installation and machines known publicly. The files comprise multi-line
tuples made up of attribute/value pairs of the form attr=value or sometimes
just attr. Each line starting without white space starts a new tuple. Lines start
ing with # are comments.

The file /lib/ndb/local is the root of the database. Other files are included in

 2

the database if a tuple with an attribute-value pair of attribute database and
no value exists in /lib/ndb/local. Within the database tuple, each pair with
attribute file identifies a file to be included in the database. The files are
searched in the order they appear. For example:

database=
file=/lib/ndb/common
file=/lib/ndb/local
file=/lib/ndb/global

declares the database to be composed of the three files /lib/ndb/common,
/lib/ndb/local, and lib/ndb/global. By default, /lib/ndb/local is
searched before the others. How- ever, /lib/ndb/local may be included in the
database to redefine its ordering.

Within tuples, pairs on the same line bind tighter than pairs on different lines.

As mentioned, the installer adds basic information about the machine to the file
/lib/ndb/local, based on the questions asked during the installation. This file may
be edited to modify or expand the definition of the local network.

6.2.1 − Host name

Each machine on the network receives a corresponding section in ndb. The host name
(hereafter referred to as sysname) is assigned by setting the sys= tuple:

sys=x301

The resulting sysname is used by the /rc/bin/termrc and /rc/bin/cpurc
startup scripts, which in turn call upon any additional configuration that may exist in
/cfg/$sysname/. (Look at the scripts to see how they deal with /cfg.)

6.2.2 − Identifying and setting up your network interfaces

Network interfaces are recognized by their MAC addresses, which are identified to ndb
using the ether= tuple:

sys=x301 ether=00226811f7dd

Additional tuples in the same grouping will be used to configure the interface in ques
tion.

6.2.2.1 − WiFi

The following sections provide information pertaining to specific chipsets.

Read: plan9.ini(8), FQA Section 3.2 − Known Working Hardware

 3

6.2.2.1.1 − Interfaces

6.2.2.1.1.1 − wavelan

Lucent Wavelan (Orinoco) IEEE 802.11b and compatible PCMCIA cards. Compatible
cards include the Dell TrueMobile 1150 and the Linksys Instant Wireless Network PC
Card. Port and IRQ defaults are 0x180 and 3 respectively.

These cards take a number of unique options to aid in identifying the card correctly on
the 802.11b network. The network may be ad hoc or managed (i.e. use an access
point): mode=[adhoc, managed] and defaults to managed. The 802.11b network
to attach to (managed mode) or identify as (ad hoc mode), is specified by
essid=string and defaults to a null string. The card station name is given by
station=string and defaults to Plan 9 STA. The channel to use is given by
channel=number where number lies in the range 1 to 16 inclusive; the channel is
normally negotiated automatically.

If the card is capable of encryption, the following options may be used:
crypt=[off, on] and defaults to on. keyN=string sets the encryption key N
(where N is in the range 1 to 4 inclusive) to string; this will also set the transmit key to N
(see below). There are two formats for string which depend on the length of the string.
If it is exactly 5 or 13 characters long it is assumed to be an alphanumeric key; if it is
exactly 10 or 26 characters long the key is assumed to be in hex format (without a
leading 0x). The lengths are checked, as is the format of a hex key. txkey=number
sets the transmit key to use to be number in the range 1 to 4 inclusive. If it is desired
to exclude or include unencrypted packets clear=[off, on] configures reception
and defaults to inclusion.

The defaults are intended to match the common case of a managed network with
encryption and a typical entry would only require, for example essid=left−
armpit key1=afish key2=calledraawaru if the port and IRQ defaults are
used. These options may be set after boot by writing to the device�s ctl file using a
space as the separator between option and value, e.g. echo ’key2
1d8f65c9a52d83c8e4b43f94af’ >/net/ether0/0/ctl Card-specific
power management may be enabled/disabled by pm=[on, off]

6.2.2.1.1.2 − wavelanpci

PCI Ethernet adapters that use the same Wavelan programming interface. Currently the
only tested cards are those based on the Intersil Prism 2.5 chipset.

6.2.2.1.1.3 − iwl

Intel Wireless WiFi Link mini PCI-Express adapters require firmware from
http://firmware.openbsd.org/firmware/iwn-firmware*.tgz to be present on attach in
/lib/firmware or /boot. To select the access point, the essid= and bssid=
parameters can be specified at boot or set during runtime like:

echo essid left−armpit >/net/ether1/clone

If both essid= and bssid= are specified, both must match. Scan results appear in
the ifstats file and can be read out like:

 4

cat /net/ether1/ifstats

Ad-hoc mode or WEP encryption is currently not supported. To enable WPA/WPA2
encryption, see wpa(8) for details.

6.2.2.1.1.4 − rt2860

Ralink Technology PCI/PCI-Express wireless adapters require firmware from
http://firmware.openbsd.org/firmware/ral-firmware*.tgz to be present on attach in
/lib/firmware or /boot. See the iwl section above for configuration details.

6.2.2.1.1.5 − wpi

Intel PRO Wireless 3945abg PCI/PCI-Express wireless adapters require firmware from
http://firmware.openbsd.org/firmware/*/wpi-firmware*.tgz to be present on attach in
/lib/firmware or /boot. See the iwl section above for configuration details.

6.2.2.1.2 − WPA

WPA1/TKIP and WPA2/CCMP are supported with the use of the wpa(8) command.

Read: wpa(8)

6.2.2.1.3 − WiFi Roaming

A script can be used to dynamically re-associate with available wifi access points:

http://plan9.stanleylieber.com/rc/wifiroam

Example usage:

@{wifiroam attwifi | aux/statusmsg −k wifiroam} &

6.2.2.1.4 − WiFi Debug

For cards that use the wifi layer, debug prints (note: will appear on the console) may be
enabled with:

echo debug >´#l0/ether0/clone´
change this to suit if wifi interface is not #l0

or by adding debug=1 to the interface definition in plan9.ini.

Read: plan9.ini(8)

 5

6.2.3 − IP address The ip= tuple is used to associate an IP address with the machine:

sys=x301 ether=00226811f7dd ip=192.168.0.31

If no ip= tuple is present, the boot scripts will attempt to bring up the interface using
DHCP (see below). If multiple ip= tuples are present, an ipnet entry is required for
each.

6.2.4 − Default gateway

The default gateway is configured using the ipgw= tuple, usually under an ipnet=
section that defines default settings for an entire subnet:

ipnet=9front ip=192.168.0.0 ipmask=255.255.255.0 ipgw=192.168.0.1

but it may also be specified on a per-machine basis:

sys=x301 ether=00226811f7dd ip=192.168.0.31 ipgw=192.168.0.1

Note: Tuples included in the definition of a machine supercede those defined for the
network to which the machine belongs.

6.2.5 − DNS Resolution

DNS resolvers may be specified using the dns= tuple, and may be configured for an
entire network:

ipnet=9front ip=192.168.0.0 ipmask=255.255.255.0 ipgw=192.168.0.1
dns=192.168.0.1

or on a per-machine basis:

sys=x301 ether=00226811f7dd ip=192.168.0.31 dns=192.168.0.1

These changes will take effect after a reboot. To configure a DNS resolver on the fly, it is
possible to manually edit /net/ndb:

ip=192.168.0.31 ipmask=255.255.255.0 ipgw=192.168.0.1
sys=x301
dom=x301.9front
dns=192.168.0.1
add or modify dns= lines to associate the DNS
server 192.168.0.1 with the running system

Note: /net/ndb is a synthetic file that represents the current operating state. It does
not persist across reboots, and is only pre-populated when system networking was con
figured via DHCP. Changes to a blank /net/ndb file will match on the ip= tuple.

Read: ip(3)

Finally, to turn on debug in dns:

echo −n debug >/net/dns

 6

6.2.5.1 − Caching DNS server

To run a caching DNS server, modify /cfg/$sysname/termrc or
/cfg/$sysname/cpurc (whichever is appropriate) to include the following:

ndb/dns −rs

The caching DNS server will be started at boot time.

Next, modify /lib/ndb/local such that the desired machines will use the IP
address of the new caching DNS server as their DNS server, either by changing the
dns= tuple under the ipnet of the corresponding network or by adding a dns= tuple
to the line of each desired machine.

Read: ndb(6) and ndb(8)

6.2.5.2 − DNS authoritative name server

An authoritative domain name record, with associated reverse-lookup and sub-
domains, looks like this:

dom=bell−labs.co soa=
refresh=10800 ttl=10800
serial is automatically maintained if omitted
serial=2012110732
ns=ns5.he.net
ns=ns4.he.net
ns=ns3.he.net
ns=ns2.he.net
ns=nm.iawtp.com
ns=pp.iawtp.com
ns=mars2.iawtp.com
dnsslave=slave.dns.he.net
mb=sl@stanleylieber.com
mx=pp.inri.net pref=5
mx=nm.inri.net pref=10
mx=mars2.inri.net pref=15
txt="v=spf1 mx −all"

dom=125.191.107.in−addr.arpa soa=
refresh=3600 ttl=3600
ns=nm.iawtp.com

dom=bell−labs.co ip=107.191.125.208

dom=www.bell−labs.co cname=bell−labs.co

An FQDN may be assigned to an existing machine by adding the dom= tuple to its defi
nition:

sys=x301 dom=x301.bell−labs.co ether=00226811f7dd ip=192.168.0.31

Note: The dnsslave entries specify slave DNS servers that should be notified when the
domain changes. The notification service also requires the −n flag:

 7

ndb/dns −nrs

Read: ndb(8)

6.2.5.2.1 − Troubleshooting DNS authoritative name server

An online tool that evaluates the DNS configuration of a given domain name is available
at: https://intodns.com

6.2.6 − Network−wide configuration

Settings for an entire network subnet may be defined under an ipnet= tuple:

ipnet=9front ip=192.168.0.0 ipmask=255.255.255.0
ipgw=192.168.0.1
auth=192.168.0.2
authdom=9front
fs=192.168.0.3
cpu=192.168.0.4
dns=192.168.0.1
dnsdomain=9front
smtp=192.168.0.4

ethernet/wifi router
sys=onoff dom=onoff.9front ip=192.168.0.1

auth server
sys=auth dom=auth.9front ether=00d059b6dac8 ip=192.168.0.2

bootf=/386/9bootpxe

cpu server
sys=cpu dom=cpu.9front ether=001125149137 ip=192.168.0.4

bootf=/386/9bootpxe

file server
sys=fs dom=fs.9front ether=001641360117 ip=192.168.0.3

terminal
sys=x301 dom=x301.9front ether=00226811f7dd ip=192.168.0.31

bootf=/386/9bootpxe

Note: Each ipnet entry matches on a single IP prefix. Attributes missing from an
ipnet entry can be inhereted from more inclusive entries with shorter prefixes.

6.2.7 − Activating the changes

6.2.7.1 − NIC

Network interfaces are automatically initialized at boot time. To make a manual change
without rebooting, use the ipconfig(8) command:

 8

ip/ipconfig −g 192.168.0.1 ether /net/ether0 \
192.168.0.31 255.255.255.0

6.2.7.2 − cs

To refresh the network database NOW after changing /lib/ndb/local:

echo −n refresh > /net/cs

6.2.7.3 − dns

echo −n refresh > /net/dns

6.2.8 − Verifying network settings

% cat /net/ndb
ip=192.168.0.31 ipmask=255.255.255.0 ipgw=192.168.0.1

sys=x301
dom=x301.9front
auth=192.168.0.2
dns=192.168.0.1

6.2.8.1 − Checking routes

% cat /net/iproute
0.0.0.0 /96 192.168.0.1 4 none −
192.168.0.0 /120 192.168.0.0 4i ifc 0
192.168.0.0 /128 192.168.0.0 4b ifc −
192.168.0.31 /128 192.168.0.31 4u ifc 0
192.168.0.255 /128 192.168.0.255 4b ifc −
255.255.255.255 /128 255.255.255.255 4b ifc 0

6.2.8.1.1 − Adding static routes

Route requests for 192.168.1.0/24 through the gateway 192.168.0.99 (which
itself must already be accessible via the existing network configuration):

echo ´add 192.168.1.0 255.255.255.0 192.168.0.99´ >/net/iproute

Note: Manual configurations such as this may be added to optional boot scripts created
in /cfg/$sysname/.

Read: ip(3)

6.2.9 − Setting up your 9front box as a forwarding gateway

Read: ip(3)

 9

6.2.10 − Setting up aliases on an interface

Read: ip(3)

6.3 − How do I filter and firewall with 9front?

No.

6.4 − Dynamic Host Configuration Protocol (DHCP)

6.4.1 − DHCP client

In /lib/ndb/local, if no ip= tuple is present in the machine�s definition, the boot
scripts will attempt to obtain an IP address via DHCP.

To obtain a DHCP lease manually:

ip/ipconfig

Read: ipconfig(8)

6.4.2 − DHCP server

From dhcpd(8):

[Continued on next page]

 10

Dhcpd runs the BOOTP and DHCP protocols. Clients use these
protocols to obtain configuration information. This infor−
mation comes from attribute/value pairs in the network data−
base (see ndb(6) and ndb(8)). DHCP requests are honored both
for static addresses found in the NDB and for dynamic
addresses listed in the command line. DHCP requests are
honored if either:
− there exists an NDB entry containing both the ethernet
address of the requester and an IP address on the originat−
ing network or subnetwork.
− a free dynamic address exists on the originating network
or subnetwork.

A BOOTP request is honored if all of the following are true:
− there exists an NDB entry containing both the ethernet
address of the requester and an IP address on the originat−
ing network or subnetwork.
− the entry contains a bootf= attribute
− the file in the bootf= attribute is readable.

Dynamic addresses are specified on the command line as a
list of addresses and number pairs. For example,

ip/dhcpd 10.1.1.12 10 10.2.1.70 12
directs dhcpd to return dynamic addresses 10.1.1.12 through
10.1.1.21 inclusive and 10.2.1.70 through 10.2.1.81 inclu−
sive.

Dhcpd maintains a record of all dynamic addresses in the
directory /lib/ndb/dhcp, one file per address. If multiple
servers have access to this common directory, they will cor−
rectly coordinate their actions.

Attributes come from either the NDB entry for the system,
the entry for its subnet, or the entry for its network. The
system entry has precedence, then the subnet, then the net−
work. The NDB attributes used are:

ip the IP address
ipmask the IP mask
ipgw the default IP gateway
dom the domain name of the system
fs the default Plan 9 file server
auth the default Plan 9 authentication server
dns a domain name server
ntp a network time protocol server
time a time server
wins a NETBIOS name server
www a World Wide Web proxy
pop3 a POP3 mail server
smtp an SMTP mail server
bootf the default boot file; see ndb(6)

Dhcpd will answer BOOTP requests only if it has been specif−
ically targeted or if it has read access to the boot file
for the requester. That means that the requester must spec−
ify a boot file in the request or one has to exist in NDB
for dhcpd to answer. Dhcpd will answer all DHCP requests
for which it can associate an IP address with the requester.

 11

To configure a DHCP server on your system:

mkdir /lib/ndb/dhcp

and then modify /cfg/$sysname/cpurc or /cfg/$sysname/termrc (which
ever is appropriate) to start dhcpd and tftpd at boot time:

ip/dhcpd

Read: dhcpd(8)

6.5 − PPP

Read: Dialup modem config at the Bell Labs Plan 9 wiki.

6.6 − Setting up a network bridge in 9front

Read: bridge(3) and ip(3)

6.7 − How do I boot from the network?

First, read FQA 7.3.3 − Setting up a listener for network connections. The file server
should already be running a listener, and an auth server should already be configured
and running on the network.

6.7.1 − How do I tcp boot?

It is possible to boot from local media and then mount the root file system over the net
work. At the bootargs prompt, type tls (the old tcp boot option will still work but
is not recommended because the connection will not be encrypted). At this point,
ip/ipconfig will determine network parameters using DHCP. When file (fs) or
authentication (auth) server IP addresses could not be determined over DHCP then the
boot process will prompt for those. When prompted for a user, enter a valid username
and password that has already been configured on the auth server. The machine should
then proceed to mount its root file system from the file server.

Note: Values for fs and auth may be added to plan9.ini.

Read: plan9.ini(8)

6.7.1.1 − Passing arguments to ipconfig at the bootargs prompt

When a DHCP server is not available, you may still tcp boot by configuring networking
manually at the bootargs prompt. Everything after tcp! is passed as arguments to
the ipconfig command.

At the prompt:

bootargs is (tcp, tls, il, local!device) [tcp]

enter something like the following:

 12

tls!−g 192.168.0.1 ether /net/ether0 192.168.0.23 255.255.255.0

where 192.168.0.1 is the gateway, 192.168.0.23 is the static IP address and
255.255.255.0 the subnet mask.

Read: ipconfig(8)

6.7.2 − How do I boot using PXE?

It is also possible to PXE boot a system.

On the file server, add the following lines to /cfg/$sysname/cpurc to start dhcpd
and tftpd at boot time:

ip/dhcpd
ip/tftpd

Add an entry for tftp under the appropriate ipnet= tuple in /lib/ndb/local:

ipnet=9front ip=192.168.0.0 ipmask=255.255.255.0 ipgw=192.168.0.1
auth=192.168.0.2
authdom=9front
cpu=192.168.0.4
dns=192.168.0.1
dnsdomain=9front
smtp=192.168.0.4
tftp=192.168.0.3

Reboot the file server:

fshalt −r

To configure machines that will PXE boot from the file server, edit /lib/ndb/local
on the file server and add a bootf= (boot file) tuple to the line representing each
machine:

sys=x301 dom=x301.9front ether=00226811f7dd ip=192.168.0.31
bootf=/386/9bootpxe

For the system x301 we would then create a file /cfg/pxe/00226811f7dd on the
file server to serve as its plan9.ini:

bootfile=/386/9pc
bootargs=tls
nobootprompt=tls
auth=192.168.0.2
fs=192.168.0.3
mouseport=ps2intellimouse
monitor=vesa
vgasize=1440x900x32
*acpi=1
user=sl

Note: The user= parameter refers to a single username that has been added both to
the file server (for file permissions) as well as to the auth server (for network authentica
tion).

 13

If a file matching the remote system�s MAC address is not found under /cfg/pxe/,
the file /cfg/pxe/default (if it exists) will be used instead.

Finally, boot the desired remote systems via PXE. When prompted for a user, enter a
valid username and password that has already been configured on the auth server. The
remote system should now proceed to boot from the file server.

